My Personal Journey In Research

 After taking an undergraduate Neuropsychology course at Rutgers University, I was exposed to a series of anatomical networks associated with learning, reward, and motivation. My interests soon became focused on how networks responsible for learning translate reward and motivation into action. It became apparent that this question is relevant not only in the context of experience-dependent changes that occur naturally, but also circumstances in which acute drug use transitions into abuse. This motivated me to learn about the characterizations of addiction in the uncompromised brain just as well as the impaired or diseased brain.  

Clinical Research

 Working under Dr. Kunal Gandhi in the UMDMJ Division of Addiction Psychiatry, I learned about the relationship between mental illness and addiction. Research in this clinic focused on treatments for chronic smokers with Schizophrenia. People with Schizophrenia motivated clinical testing because they tend to smoke at higher rates (Lasser et al., 2000; de Leon and Diaz, 2005), have lower cessation rates (Lasser et al., 2000; Covey et al., 1994), and they suffer increased cardiovascular and respiratory diseases as well as reduced life expectancy in comparison to the general population with no mental illness (Curkendall et al., 2004; Brown et al.,2000; Capasso et al., 2008). These outcomes are linked to greater nicotine intake per cigarette exhibited by higher levels of nicotine and continin, a nicotine metabolite (Olincy et al., 1997; Williams et al., 2005, 2010). Increases in serum nicotine levels seem to be a result of altered puffing behavior in these patients, which is defined as a shorter inter-puff interval compared to matched controls after a 24 hour smoke period (Williams et al., 2011). According to Patterson and colleagues (2003), the larger “nicotine boost” may be linked to increased addictive potential and susceptibility for relapse after a quit attempt. Therefore, the goal of clinical testing was to measure the efficacy of nicotine nasal sprays (NNS) as a treatment for chronic smokers with Schizophrenia. Results demonstrated that many patients remained abstinent or significantly reduced their smoking since NNS could be self-administered to optimally titrate nicotine dosage (Williams and Gandhi, 2009). NNS treatment is beneficial in patients with schizophrenia because nicotine transiently normalizes auditory (P50) gating mechanisms caused by poor inhibition of nicotinic alpha- 7 receptors on GABA-B interneurons (Adler et al., 1993; 2008; Freedman et al. 1997). Because defective auditory gating is responsible for hallucinations, use of nicotine nasal sprays allow for improvements cognitive functioning without the health issues caused by smoking. This experience displays the advantages of addictive substances as treatment for the diseased brain without compromising health. Most importantly, this research brings hope for the possibility of treating other conditions affected by deficiencies in the cholinergic system, such as Alzheimers Dementia and Parkinson's disease.  

Electrophysiological Research in Motor and Limbic Systems

 In Dr. Mark West’s laboratory, I learned about how mesolimbic and motorlimbic structures engage during chronic cocaine self-administration in naive rats. This provided me with an understanding of the functional adaptations within these structures in addition to behavioral changes while acquiring an addiction. Responsible for primarily reward, motivation, and action, mesolimbic systems are implicated in acquisition of drug-seeking/taking and habit formation (Belin & Everit